首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   27篇
  国内免费   4篇
测绘学   17篇
大气科学   47篇
地球物理   133篇
地质学   318篇
海洋学   49篇
天文学   80篇
自然地理   35篇
  2023年   6篇
  2021年   12篇
  2020年   13篇
  2019年   9篇
  2018年   26篇
  2017年   14篇
  2016年   27篇
  2015年   24篇
  2014年   30篇
  2013年   40篇
  2012年   37篇
  2011年   45篇
  2010年   45篇
  2009年   59篇
  2008年   47篇
  2007年   26篇
  2006年   29篇
  2005年   31篇
  2004年   35篇
  2003年   29篇
  2002年   30篇
  2001年   12篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1986年   4篇
  1984年   1篇
  1983年   4篇
  1979年   1篇
排序方式: 共有679条查询结果,搜索用时 156 毫秒
21.
Soaring migrants such as storks, pelicans and large birds of prey rely on thermal convection during migration. The convection model ALPTHERM was designed to predict the onset, strength, duration and depth of thermal convection for varying topographies for glider pilots, based on atmospheric conditions at midnight. We tested ALPTHERM predictions as configured for two topographies of central Israel, the Coastal Plains and the Judean and Samarian Mountains in order to predict altitudes of migrating white storks (Ciconia ciconia). Migrating flocks of white storks were tracked with a motorized glider, to measure maximum altitudes of migration during spring 2000. A significant positive correlation was found between the maximum daily altitudes of migration measured and the predicted upper boundary of thermal convection for the Coastal Plains and Samarian Mountains. Thirty-minute predictions for the Coastal Plains and Samarian Mountains correlated positively with measured maximum migration altitudes per thermal. ALPTHERM forecasts can be used to alter flight altitudes in both civil and especially military aviation and reduce the hazard of serious aircraft collisions with soaring migrants.  相似文献   
22.
23.
This document explores the possibilities of multiscale expansions and domain decomposition to solve part of the Couplex 1 exercise. We concentrate on the hydrostatic pressure and show that the slenderness of the domain and the large variations of the Darcy constants allows an analytical approximation which our test reveals to be true to relative errors smaller than 10–3. The numerical tests are done in 2D with freefem+ and in 3D with freefem3D. Some considerations are also given for Iodine transport.  相似文献   
24.
This article introduces the SVG (salt‐velocity gauge), a novel automated technique for measuring flow velocity by means of salt tracing. SVG allows a high measuring rate (up to one every 2 seconds), short control section length (down to 10 cm), high accuracy (+[sol ]?1·5 cm s?1), and unbiased calculation of the mean velocity in experimental conditions with turbulent, supercritical flow. A few cubic centimetres of saturated salt solution (NaCl) are injected into the flow at regular time intervals using a programmable solenoid valve. The tracer successively passes two conductivity probes placed a short distance downstream. The transformation of the signal between the two probes is modelled as a one‐dimensional diffusion wave equation. Model calibration gives an estimation of the mean velocity and the diffusion for each salt plume. Two implementations of the SVG technique are described. The first was an outdoors simulated rainfall experiment in Senegal (conductivity probes at 40 cm apart, 8 Hz measurement rate, salt injections at 10 second intervals). Mean velocity was estimated to range between 0·1 and 0·3 m s?1. The second was a laboratory‐based flume experiment (conductivity probes at 10 cm apart, 32 Hz, salt injections at 2 second intervals). Another SVG with probes at 34 cm apart was used for comparison. An acoustic Doppler velocimeter (ADV) was also used to give an independent assessment of velocity. Using the 10 cm salt gauge, estimated mean velocity ranged from 0·6 to 0·9 m s?1 with a standard deviation of 1·5 cm s?1. Comparisons between ADV, 10 cm SVG and 34 cm SVG were consistent and demonstrated that the salt‐tracing results were unbiased and independent of distance between probes. Most peaks were modelled with r2 > 90 per cent. The SVG technology offers an alternative to the dye‐tracing technique, which has been severely criticized in the literature because of the wide interval of recommended values for the correction factor α to be applied to the timings. This article demonstrates that a fixed value of α is inappropriate, since the correction factor varies with velocity, diffusion and the length of the control section. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
25.
26.
Field structural and SPOT image analyses document the kinematic framework enhancing transfer of strike-slip partitioned motion from along the backstop to the interior of the Zagros fold-and-thrust belt in a context of plate convergence slight obliquity. Transfer occurs by slip on the north-trending right-lateral Kazerun Fault System (KFS) that connects to the Main Recent Fault, a major northwest-trending dextral fault partitioning oblique convergence at the rear of the belt. The KFS formed by three fault zones ended by bent orogen-parallel thrusts allows slip from along the Main Recent Fault to become distributed by transfer to longitudinal thrusts and folds. To cite this article: C. Authemayou et al., C. R. Geoscience 337 (2005).  相似文献   
27.
Carbon dioxide sequestration in deep aquifers and depleted oilfields is a potential technical solution for reducing green-house gas release to the atmosphere: the gas containment relies on several trapping mechanisms (supercritical CO2, CO2(sc), dissolution together with slow water flows, mineral trapping) and on a low permeability cap-rock to prevent CO2(sc), which is less dense than the formation water, from leaking upwards. A leakproof cap-rock is thus essential to ensure the sequestration efficiency. It is also crucial for safety assessment to identify and assess potential alteration processes that may damage the cap-rock properties: chemical alteration, fracture reactivation, degradation of injection borehole seals, etc. The reactivity of the host-rock minerals with the supercritical CO2 fluid is one of the potential mechanisms, but it is altogether unknown. Reactivity tests have been carried out under such conditions, consisting of batch reactions between pure minerals and anhydrous supercritical CO2, or a two-phase CO2/H2O fluid at 200?°C and 105/160 bar. After 45 to 60 days, evidence of appreciable mineral-fluid reactivity was identified, including in the water-free experiments. For the mixed H2O/CO2 experiments, portlandite was totally transformed into calcite; anorthite displayed many dissolution patterns associated with calcite, aragonite, tridymite and smectite precipitations. For the anhydrous CO2 experiments, portlandite was totally carbonated to form calcite and aragonite; anorthite also displayed surface alteration patterns with secondary precipitation of fibrous calcite. To cite this article: O. Regnault et al., C. R. Geoscience 337 (2005).  相似文献   
28.
Geospeedometry allows to estimate the cooling rate (sinit) of metamorphic rocks at the beginning of the cooling history using diffusion data. But the choice of a diffusion activation energy (E) and a preexponential factor (D0) from experimental results can be difficult. We propose a method to obtain E directly from the rock itself by studying the variation of the average concentration of elements or isotopes (〈C〉) as a function of mineral grain size (d). An appropriate value of D0 can then be estimated using an existing compensation rule, a linear relationship between log D0 and E. Consequently, uncertainties on sinit are markedly reduced. All parameters of this analytical model and their sensitivity on sinit can be estimated from 〈C〉 of the mineral grains under study. As a test we apply our model to a study by Edwards and Valley (1998)**** on 18O/16O fractionation between diopside and calcite in Adirondacks marbles, and find a cooling rate in agreement with previous works, without choosing experimental values for E and D0.  相似文献   
29.
Experiments were conducted to evaluate the impact of organic complexation on the development of Ce anomalies and the lanthanide tetrad effect during the adsorption of rare-earth elements (REE) onto MnO2. Two types of aqueous solutions—NaCl and NaNO3—were tested at pH 5 and 7.5. Time-series experiments indicate that a steady-state is reached within less than 10 h when REE occur as free inorganic species, whereas steady state is not reached before 10 d when REE occur as REE-humate complexes. The distribution coefficients (KdREE) between suspended MnO2 and solution show no or only very weak positive Ce anomaly or lanthanide tetrad effect when REE occur as humate complexes, unlike the results obtained in experiments with REE occurring as free inorganic species. Monitoring of dissolved organic carbon (DOC) concentrations show that log KdREEorganic/KdDOC ratios are close to 1.0, implying that the REE and humate remain bound to each other upon adsorption. Most likely, the Ce anomaly reduction/suppression in the organic experiments arises from a combination of two processes: (i) inability of MnO2 to oxidize Ce(III) because of shielding of MnO2 surfaces by humate molecules and (ii) Ce(IV) cannot be preferentially removed from solution due to quantitative complexation of the REE by organic matter. We suggest that the lack of lanthanide tetrad effect arises because the adsorption of REE-humate complexes onto MnO2 occurs dominantly via the humate side of the complexes (anionic adsorption), thereby preventing expression of the differences in Racah parameters for 4f electron repulsion between REE and the oxide surface. The results presented here explain why, despite the development of strongly oxidizing conditions and the presence of MnO2 in the aquifer, no (or insignificant) negative Ce anomalies are observed in organic-rich waters. The present study demonstrates experimentally that the Ce anomaly cannot be used as a reliable proxy of redox conditions in organic-rich waters or in precipitates formed at equilibrium with organic-rich waters.  相似文献   
30.
Equatorial glacier‐fed streams present unique hydraulic patterns when compared to glacier‐fed observed in temperate regions as the main variability in discharge occurs on a daily basis. To assess how benthic fauna respond to these specific hydraulic conditions, we investigated the relationships between flow regime, hydraulic conditions (boundary Reynolds number, Re*), and macroinvertebrate communities (taxon richness and abundance) in a tropical glacier‐fed stream located in the high Ecuadorian Andes (> 4000 m). Both physical and biotic variables were measured under four discharge conditions (base‐flow and glacial flood pulses of various intensities), at 30 random points, in two sites whose hydraulic conditions were representative to those found in other streams of the study catchment. While daily glacial flood pulses significantly increased hydraulic stress in the benthic habitats (appearance of Re* > 2000), low stress areas still persisted even during extreme flood events (Re* < 500). In contrast to previous research in temperate glacier‐fed streams, taxon richness and abundance were not significantly affected by changes in hydraulic conditions induced by daily glacial flood pulses. However, we found that a few rare taxa, in particular rare ones, preferentially occurred in highly stressed hydraulic habitats. Monte‐Carlo simulations of benthic communities under glacial flood reduction scenarios predicted that taxon richness would be significantly reduced by the loss of high hydraulic stress habitats following glacier shrinking. This pioneer study on the relationship between hydraulic conditions and benthic diversity in an equatorial glacial stream evidenced unknown effects of climate change on singular yet endangered aquatic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号